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Optical properties of nonequilibrium low-dimensional systems
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The optical properties of low-dimensional carrier systems~‘‘quantum wire’’ type! driven away from equi-
librium are studied. The frequency and wave-vector-dependent dielectric function of a quasi-one-dimensional
electron system under the action of an exciting external pumping source is derived. The optical responses of
the system are obtained in terms of its nonequilibrium thermodynamic state, the latter characterized resorting
to a nonequilibrium statistical ensemble formalism.

PACS number~s!: 05.70.Ln, 73.20.Dx, 87.10.1e
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I. INTRODUCTION

The question of transport and other physical propertie
spatially constrained systems is having a strong and hea
development. This applies to two kinds of areas of resea
such as the physics of semiconductors and biological
tems. The case of semiconductor systems with low dim
sionality is presently the object of extensive theoretical a
experimental study~e.g., see@1#!; the case of biosystem
involves among others, biopolymers, in particular, peptid
and proteins, composed of long chains of amino acid un
and DNA molecules@2#. Both, semiconductors in electron
devices and living biological systems, work under noneq
librium conditions~usually far from equilibrium!, and then
involve situations where strong dissipative effects are
folding in the medium. Thus this question belongs to t
realm of the thermodynamics of irreversible process
which is a field theory at a macroscopic level dealing w
states and processes in systems lying beyond equilibr
either by a large amount or close to equilibrium correspo
ing to the nonlinear and linear, respectively, divisions of t
area of research. Hence, nonequilibrium thermodynam
deals basically with transport phenomena involving chan
in time and space of macroscopic observables and t
fluxes in continuum media, as well as with the importa
case of steady states.

We consider here the case of a quasi-one-dimensi
system~Q1DS! as a quantum wire semiconductor sample
a biopolymer containing charge carriers~we take the case o
a p-doped material—where the carriers are holes—as it
for example, the case in proteins@3#!. We concentrate ou
analysis on the optical properties of these carriers, to
dence their electronic excitations~single particles and plasm
waves! through the analysis of Raman scattering experime
under varying excitation conditions.

II. IRREVERSIBLE THERMODYNAMICS OF THE Q1DS

Let us consider a quasi-one-dimensional cylindri
sample, where mobile carriers are present—and we cons
in particular the case of holes inp-doped materials—which
PRE 611063-651X/2000/61~1!/71~6!/$15.00
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are traveling in the ionic background. LetR be the radius of
the wire andL its length; moreover, these carriers are excit
by the action of an external source pumping energy on th
This exciting pump may be a source of electromagnetic
diation e.g., provided by a laser, in the case of the semic
ductor ~e.g., see@4#!, or nonelectromagnetic radiation in th
case of biopolymers~e.g., see@5#!. Let nh be the linear den-
sity of holes~number of holes per unit length along the ax
of the wire!, and in this cylindrical constrained geometry th
hole energy levels are given by

eknl5
\2

2mh*
~knl

2 1k2!, ~1!

wheremh* is the hole effective mass,k is the crystalline wave
number for free movement along thez direction of the axis
of the cylinder, andknl5bnl /R wherebnl are the zeros of
the Bessel function of ordern, Jn(bnlr /R), with n
50,1,2, . . . andl 51,2, . . . , andr is the radial coordinate
~the problem is axially symmetric!. The wave functions are
in cylindrical coordinates

Cnlk~r ,u,z!5AJn~bnlr /R!exp~ inu!exp~ ikz!, ~2!

where

A215AL~pR2!1/2Jn11~bnl!. ~3!

We recall that the knowledge of the frequency and wa
number-dependent dielectric function«(Q,v) provides in-
formation on all the optical properties of the system; he
we are interested in the particular one consisting of the
man scattering spectrum when considering different con
tions of excitation, that is, changing values of the intensity
the pumping source.

As already noticed, for nonequilibrium systems we a
required to analyze their macroscopic properties using a t
momechanical statistical formalism, and we resort to the
of the nonequilibrium statistical operator method~NESOM!
and Zubarev’s approach is used@6,7#. According to NESOM,
the first step—in this nonequilibrium statistical ensemb
formalism—is the choice of a set of basic dynamical va
71 ©2000 The American Physical Society
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72 PRE 61HASSAN, VASCONCELLOS, MESQUITA, AND LUZZI
ables ~mechanical observables! that can provide a macro
scopic description of the system appropriate for the exp
mental situation to be considered. The average value
these dynamical variables over the nonequilibrium ensem
provides the basic set of macrovariables that define the n
equilibrium thermodynamic space of states@8,9#. We con-
sider a model where only the lowest subbandn50, l 51 @cf.
Eq. ~1!# is occupied, which then restricts the values of t
doping concentrationnh we can use.

For the basic dynamical variables we take

ˆĤ0N̂h ;$n̂kQ%‰, ~4!

consisting of the HamiltonianĤ0 and the operatorN̂h for the
number of the free holes

Ĥ05(
k

ekh2k
† h2k , N̂h5(

k
h2k

† h2k , ~5!

and the Dirac-Landau-Wigner single-particle dynamical o
erators for holes

n̂kQ5h2k2~1/2!Qh2k2~1/2!Q
† , ~6!

whereQÞ0, which is associated with the description of i
homogeneous quantities, while the diagonal terms~popula-
tions! are present inĤ0 andN̂h of Eq. ~5!. Moreover,h (h†)
are the usual annihilation~creation! operators in the quantum
state labeled by the subindexk @we recall that we are only
considering the subbandn50, l 51, indexes which we have
omitted in Eqs.~4!–~6!#.

Two points need to be stressed: the first is that in c
densed matter physics, however the strong Coulomb inte
tion is present, a single-particle description in the rando
phase approximation@11# can be used and it is extreme
successful; the second is that the quantity of interest fo
here is, as noticed,«(Q,v), which can be derived from the
knowledge of the polarization charge~in units of the electron
charge!. In fact, from electrodynamic theory@10#

1

«~Q,v!
215

n~Q,v!

r 0
, ~7!

wheren(Q,v) is the Fourier transform of the charge dens
generated by a probe charge oscillating with frequencyv,
propagating with wave numberQ, and having amplituder 0 ,
which we calculate in the random-phase approximation.

The basic thermodynamic variables are then the avera
over the nonequilibrium ensemble of the quantities of Eq.~4!
at time t, which we designate as

ˆE0~ t !;nh~ t !;$nkQ~ t !%‰, ~8!

which is the free holes energy and density and Dir
Landau-Wigner single-particle density matrix in nonequil
rium conditions, namely,

E0~ t !5Tr$Ĥ0%«~ t !%, ~9!

nh~ t !5
1

L
Tr$N̂h%«~ t !%, ~10!
i-
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nkQ~ t !5Tr$n̂kQ%«~ t !%, ~11!

where%« is the nonequilibrium statistical operator. The latt
is given in MaxEnt-NESOM@6,7,12,13# by the expression

%«~ t !5expH 2Ŝ~ t,0!1E
2`

t

dt8e«~ t82t !
d

dt8
Ŝ~ t8,t82t !J ,

~12!

where in this case, for the basic set of variables of Eq.~4!,

Ŝ~ t,0!5f~ t !1b~ t !@Ĥ02m~ t !N̂h#1(
kQ

FkQ~ t !n̂kQ

~13!

is the so-called informational entropy operator@14# and

Ŝ~ t8,t82t !5expH 2
1

i\
~ t82t !ĤJ Ŝ~ t8,0!expH 1

i\
~ t82t !ĤJ .

~14!

The quantityf(t) ~playing in the theory the role of the
logarithm of a nonequilibrium partition function and being
nonequilibrium Massieu-Planck thermodynamic potenti!
together withb(t), 2b(t)m(t), and FkQ(t) are the corre-
sponding Lagrange multipliers that the variational derivat
in MaxEnt-NESOM introduces.

The relevance of the choice of the set$nkQ(t)% resides in
that we are looking for an expression for«(Q,v) of Eq. ~7!,
wheren(QW ,v) is the Fourier transform in time of

n~Q,t !5(
k

nkQ~ t !. ~15!

LeavingE0(t) for a later analysis, taking into account th
nh(t) is the constant doping concentrationnh , using the non-
linear quantum kinetic theory that MaxEnt-NESOM provid
@6,7,15# in the Markovian approximation@16#, and consider-
ing that under the action of a constant-in-time source pum
ing energy in a uniform way, the system achieves a hom
geneous steady state~after a transient regime has elapse!.
The equations of evolution for Dirac-Landau-Wigner dens
matrices resulting from the perturbation of aQ- and
v-dependent probe charge are

i\
d

dt
nkQ~ t !5r 0eivt~ f k1~1/2!Q* 2 f k2~1/2!Q* !V~Q!

1DEkQnkQ~ t !2V~Q!~ f k1~1/2!Q* 2 f k2~1/2!Q* !

3n~Q,t !1 i\@AkQ1BkQ#nkQ~ t !

1 i\~ f k1Q* 2 f k* !(
k8

Ck8Qnk8Q~ t !

1 i\(
k8

Dkk8Qnk1k8Q~ t !, ~16!

whereQ together withk andk8 run over the Brillouin zone
of the periodic array of molecules being considered. In t
Eq. ~16!

DEkQ5ek1~1/2!Q2ek2~1/2!Q , ~17!
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and

V~Q!52e2K0~QR!/e0L ~18!

is the matrix element of Coulomb interaction for this Q1D
with K0 being the Bessel function of order zero ande0 is the
background static dielectric constant. Moreover, the te
with B, C, andD involve contributions arising out of carrier
phonon interaction, andA the coupling with the externa
source, which we discuss below. The quantity

f k* 5Tr$h2k
† h2k%̄ss% ~19!

plays the role of a population in stateuk& of the holes in the
uniform steady state characterized by the statistical oper

%̄ss5exp$2f* 2b* Ĥ01b* m* N̂%. ~20!

In this Eq. ~20! we recallf* is the Lagrange multiplier
which in NESOM ensures the normalization of the statisti
operator,b* [1/kBTc* is the one associated with the ener
that has been written in the usual form introducing the car
quasitemperatureTc* and the quasichemical potentialm*
@17,18#, which are time independent. Moreover, under co
stant uniform excitation, the Lagrange multipliersFkQ are
null in the steady state.

Furthermore, of the four coefficientsA, B, C, and D, at
intermediate to high excitations levels produced by the
ternal pumping source, those associated with carrier-pho
interaction, namely,B, C, andD, are much smaller than th
one due toA ~responsible for the pumping effects! and are
disregarded~and then we omit writing their cumbersome e
pressions!. Hence, we take only the term withAkQ which can
be written in the form

AkQ5gkQI 0 , ~21!

where I 0 is the intensity of the source andgkQ a coupling
coefficient indicating the efficiency with which the pumpe
energy is absorbed. This coefficient depends on the typ
external excitation that is used, and in what follows, witho
loss of generality, we take it to be independent ofk and it is
left as an open parameter in the theory. Finally, after so
calculation we obtain that

f k* .@11exp$b* ~ek2m* !%#21. ~22!

Furthermore, this distribution, in the usual experimen
conditions, can be approximated by

f k* .nhS 2p\2

mh* kBTc*
D 1/2

expS 2
ek

kBTc*
D . ~23!

This follows from the condition that the exponential in E
~22! is much larger than 1, and for the given fixed numb
~densitynh) of holes, the relation@cf. Eq. ~10!#

nh5
1

L (
k

f k* ~24!

determines the coefficient in front of the exponential in E
~23!; it is worth noticing that the population as given by E
~23! has an expression resembling a Maxwell-Boltzma
,

s

or

l

r
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-

like distribution for particles with densitynh and temperature
Tc* , and, we recall,L is the length of the sample. The qua
sitemperature is determined by the relation

1

L
E05

1

L (
k

ekf k* 5
1

2
nhkBTc* , ~25!

which follows after Eq.~23! is used, and whereE0 is the
energy of the holes@cf. Eq. ~9!# in the steady state attaine
when under the action of the constant external pump.

Hence, after the terms containingB, C, andD in Eq. ~16!
are neglected, we are left, after Fourier transformation
time is performed, with the integral equation

2\vnkQ~v!52r 0~ f k1~1/2!Q* 2 f k2~1/2!Q* !V~Q!

1DEkQnkQ~v!2V~Q!

3~ f k1~1/2!Q* 2 f k2~1/2!Q* !n~Q,v!

1 i\AQnkQ~v!, ~26!

whereAQ is the quantity of Eq.~21! taken ask independent
andn(Q,v) is given by

n~Q,v!5(
k

nkQ~v!, ~27!

the quantity of Eq.~15! after taking Fourier transform in the
time coordinate.

Equation~26! can be rewritten as

nkQ~v!5r 0V~Q!FkQ~v!1V~Q!FkQ~v!n~Q,v!,
~28!

where we have introduced

FkQ~v!5
f k1~1/2!Q* 2 f k2~1/2!Q*

\v1DEkQ1 i\AQ
. ~29!

Summing Eq.~28! over k and after rearranging terms w
obtain that

n~Q,v!5
r 0V~Q!F~Q,v!

12V~Q!F~Q,v!
, ~30!

where

F~Q,v!5(
k

FkQ~v!. ~31!

Using Eq.~30! in Eq. ~7! it follows that

e~Q,v!512V~Q!F~Q,v!, ~32!

an expression which forAQ50 resembles the well-known
Lindhart dielectric function; here, however, through this co
tribution, it depends on the level of excitation created by
pumping source, whose intensity is present in determin
Tc* andAQ . As we have seen,AQ is proportional to such an
intensity, andTc* is determined by Eq.~25!, and therefore by
E0 . The energy of the holes is composed of two term
namely, the thermal kinetic energy and the constant ene
provided by the source which is storaged in steady-state c
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74 PRE 61HASSAN, VASCONCELLOS, MESQUITA, AND LUZZI
ditions. The latter is proportional to the intensity of th
source, the proportionality coefficient being an absorpt
coefficient we callG corresponding to the particular kind o
excitation to be used~see below!. Thus, in general we can
write

1
2 nkBTc* 5 1

2 nkBT01GI0 , ~33!

whereT0 is the temperature of equilibrium with a therm
reservoir in the initial condition of preparation of the samp
and I 0 is, we recall, the uniform intensity of the pumpin
source.

We notice, for example, that if the pumping source co
sists of the presence of a constant electric field of intensitE,
then in the Ohmic regime we must expect a law of the ty
Tc* 5T01DE2, where D is a constant proportional to th
conductivity and, according to electrodynamics,E2 is propor-
tional to the energy of the applied field. It can be noticed t
in this case the hole’s linear momentum must be incor
rated in the set of basic variables of Eq.~6!, since a current is
then present. The situation is similar in the case of incide
of electromagnetic radiation~e.g., from a laser! where we do
also have a proportionality with the square modulus of
electric field of the radiation and then—through the Poynt
theorem—on the power-flux intensity of the laser beam@10#.
In the case of biopolymers under dark excitation it wou
depend on the metabolic energy-transfer process@5#.

We proceed next to an analysis of an optical property,
Raman scattering spectrum, of this system of charged
ticles in Q1DS out of equilibrium, looking for its dependen
on the intensity of the pumping source, that is, on its ‘‘d
tance’’ from equilibrium.

III. RAMAN SCATTERING SPECTRA

The Raman scattering differential cross section is giv
by

d2

dv dV
s~Q,v!52A~Q!@12e2b* \v#21 Im e21~Q,v!,

~34!

where Im stands as usual for the imaginary part andA(Q) is
an amplitude@19#, andV is the solid angle, in stereoradian
presented by the optical window in the detector when loo
from the center of the active volume of the sample. In
figures below the amplitude of proportionality~a constant for
givenQ in the experiment; we recall that\v and\Q are the
energy and momentum transferred in the scattering even! is
ignored, and then the intensity of the Raman signal is gi
in arbitrary units.

We obtain for the real and imaginary parts of the comp
dielectric function of Eq.~32! that

Ree~Q,v!512V~Q!(
k

Wk~Q,v!Dk
21~Q,v!, ~35!

Im e~Q,v!5V~Q!(
k

\AQDk
21~Q,v!, ~36!

where
n

,
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e
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e
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Wk~Q,v!5@\v1DEkQ#@ f k1~1/2!Q* 2 f k2~1/2!Q* #, ~37!

Dk~Q,v!5@\v1DEkQ#21@\AQ#2, ~38!

We proceed next to perform numerical calculations of
Raman spectrum for different levels of excitation in the
Q1DS. We use, just for illustration,R5250 Å, Tc* 5300 K,
nh583105 cm21, AQ is left as an open variable paramete
and we useQ50.1 cm21. In Fig. 1 are displayed spectr
corresponding to several different values ofAQ . We can
notice that two bands can be identified: they correspond—
in the case of bulk matter—to the one of single-hole exc
tions ~at low-frequency transfer! and to plasma excitation
~at higher frequencies!. Two relevant results can be pointe
out.

~1! With increasing values of the pumping source t
band corresponding to scattering by plasma excitations s
its peak towards lower frequencies. But, more important
broadens and disappears within the band correspondin
the scattering by the continuum of single-particles exc
tions. This is a consequence that the contribution contain
AQ in Eq. ~16! has the role of a dissipative term, involvin
the decay of plasma waves in a process mediated by
potential interaction with the external medium, the pumpi
source in this case, after the collisions with the lattice vib
tions have been disregarded. The source then has a two
role, on the one hand it provides kinetic energy to excite
individual single particles@cf. Eqs.~25! and~33!# and on the
other it produces the intense decay of the charge-den
wave ~the hole plasmons!.

~2! The position of the peak of the band corresponding
scattering by plasmons corresponds—as we know from
theory of the Fermi liquid@20#—to the vibrational frequency
of the plasma wave. This frequency, in the case of the n
one-dimensional system like the one we are considering,
be very approximately derived from a zero of the real part

FIG. 1. Raman spectra for different values of the amplitudeA of
the exciting source andQ50.1 cm21.
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PRE 61 75OPTICAL PROPERTIES OF NONEQUILIBRIUM LOW- . . .
the dielectric function. If we disregardAQ in the expression
for the latter, the plasma-wave dispersion relation is given
@4,21#

vQ
2 5jQ2K0~QR!.jQ2u ln~QR!u, ~39!

the approximate value valid forQR!1 ~the long-wavelength
limit !, and wherej is the square of a velocity given by

j5
2e2

«0

nh

m*
. ~40!

The frequency of Eq. ~39! is approximately vQ.
7.531012s21 for the numerical values we are using. Th
value is in a reasonably good agreement for the lowest v
of A in curve 1, while with increasingA there is a shift
towards smaller values due to the renormalization that
term in A introduces. To better illustrate the point we co
sider the case of smallA and also smallQ ~the limit of very
long wavelengths!, choosing againQ50.1 cm21 and A
5106. The real part of the dielectric function is shown
Fig. 2: We can see that it has two zeros; the first one at lo
frequencies is associated with single-particle excitatio
while the second at higher frequencies is the plasma
quency. The value of the latter agrees very well with t
value calculated from Eq.~39!. Moreover, the first zero oc
curs at a frequency given very approximately byv thQ,
wherev th is the thermal velocitymv th

2 5kBTc* , as it is also
the case for bulk systems.

Finally, in Fig. 3 we show the corresponding optical a
sorption coefficient defined by@10#

a~Q,v!5v Im e~Q,v!, ~41!

in the conditions of Fig. 2, which shows an absorption ba
at low frequencies corresponding to transitions between
dividual single-particle states, and the one due to plas

FIG. 2. The real part of the wave number and frequen
dependent dielectric function, for a given value of the amplitude
the exciting source and wave number.
y

e

e

er
s,
e-
e

-

d
-
a

waves is strongly damped~embedded in the continuum o
quasiparticles! and not observable.

We also notice that the frequency and wave-number c
ductivity s(QW ,v) can be derived from the dielectric functio
through the relation@10#

s~Q,v!1
iv

4p
@e~Q,v!21#. ~42!

Summarizing, from the Raman scattering spectra
spectrum of excitations of the system in nonequilibrium co
ditions has been obtained. It consists of the continuum
single-particle excitations~transitions between states in th
band of energy levels of holes or the valence band!. The
other band corresponds to scattering by the collective e
tation consisting of the plasma waves. As shown, the ene
dispersion relation for these plasmons can be character
from the optical properties. This is approximately given
Eq. ~39!, which has a logarithmlike singularity for very sma
values of wave numbers times the radius of the cylinder-t
sample. The group velocity of propagation, at smallQR, is

vG~Q!5
dvQ

dQ
.j1/2u ln~QR!u1/2, ~43!

which also has a logarithmlike singularity at the limit o
infinite wavelength~of course, such limit is not accessible
real situations with finite samples when the lowest wa
number mode that can be excited is of the order ofQ
5p/L).

IV. CONCLUSIONS

We have considered a plasma, composed of holes in g
metrically constrained materials~of the ‘‘quantum wire’’
type! as, for example,p doped near one-dimensional sem

-
f

FIG. 3. The absorption coefficient, related to the imaginary p
of the dielectric function, for a given value of the amplitude of t
exciting source and wave number.
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76 PRE 61HASSAN, VASCONCELLOS, MESQUITA, AND LUZZI
conductors, polymers, or biopolymers—we recall that in b
logical systems proteins arep doped@3#. This plasma is un-
der the action of an external pumping source which drive
away~near or far! from equilibrium, through, say, interactio
with electric fields—for example, in semiconductors or b
logical membranes—with electromagnetic radiation such
microwaves, or by the action of the so-called dark exc
tions ~biochemical processes! in biosystems.

The macroscopic state of this out-of-equilibrium syste
has been described by the thermodynamics of irrevers
processes based on a nonequilibrium ensemble formal
namely, MaxEnt-NESOM. We have concentrated the att
tion on the optical properties of the electronic system in
plasma, and particularly the influence of the intensity of
source driving the system to a ‘‘distance’’ from equilibrium
The frequency and wave-number-dependent dielectric fu
tion in such nonequilibrium conditions was derived, sin
from it one can obtain all the optical properties of the syst
as well as information on transport properties.

Moreover, the presence of the pumping source~electric
field, electromagnetic radiation, dark excitation, or biochem
cal pumping!, drives the holes out of equilibrium, to a the
modynamic state which is characterized by, besides the
centration fixed in the doping process, an excess of kin
energy out of the equilibrium value characterized by the q
sitemperatureTc* : Its dependence on time reflects the fa
that the nonequilibrium state of the system is evolving
time as a result of the irreversible processes that develo
the medium, but, as noticed, when under a continuous
constant source of excitation a time-independent steady
s,
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sets in. After the steady state is achieved the nonequilibr
macrostate of the system is described by the statistical
erator of Eq.~20!. On the other hand, the interaction of th
charge-density wave~the plasmons! with the pumping source
gives way to a dissipative process@characterized by the con
tribution i\AkQ in Eq. ~16!; we recall that compared with i
the other contributions arising out of interaction with th
lattice vibrations can be disregarded#. This relaxation process
is clearly evidenced by the diminution in amplitude a
broadening of the band due to scattering by plasma wa
This band dissappears with the increasing intensity of
source~for AQ'631011 in Fig. 1!, and the band due to
scattering by single particles is reduced in amplitude.

These are the physical consequences to be expecte
near-one-dimensional systems such as semiconductors q
tum wires, polymers, and biopolymers, which are driven o
of equilibrium by the action of an external source of exci
tion.
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